V-SUPER AND E-SUPER VERTEX-MAGIC TOTAL LABELING OF GRAPHS
G. Kumar
Department of Mathematics, Alagappa University Evening College, Ramnad, Tamil Nadu, India

Abstract

Let G be a graph of order p and size q. A vertex-magic total labeling is an assignment of the integers $1,2, \ldots, p+q$ to the vertices and the edges of G, so that at each vertex, the vertex label and the labels on the edges incident at that vertex, add to a fixed constant, called the magic constant of G. Such a labeling is V-super vertex-magic total if $f(V(G)=\{1,2, \ldots, p\}$, and is an E-super vertex-magic total if $f(E(G)=\{1,2, \ldots, q\}$. A graph that admits a V-super vertex-magic total labeling is called V-super vertex-magic total. Similarly, a graph that admits an E-super vertex-magic total labeling is called E-super vertex-magic total. In this paper, we provide some properties of E-super vertex-magic total labeling of graphs and we prove V-super and E-super vertex-magic total labeling of the product of cycles $C_{m} \times C_{n}$, where $m, n \geq 3$ and m, n odd.

KEYWORDS: Vertex Magic Total Labeling, V-Super Vertex Magic Total Labeling, E- Super Vertex Magic Total Labeling

Article History

Received: 15 Jun 2018 | Revised: 23 Jun 2018 |Accepted: 02 Jul 2018

